The Emergence of Spectral Universality in Deep Networks

نویسندگان

  • Jeffrey Pennington
  • Samuel S. Schoenholz
  • Surya Ganguli
چکیده

Recent work has shown that tight concentration of the entire spectrum of singular values of a deep network’s input-output Jacobian around one at initialization can speed up learning by orders of magnitude. Therefore, to guide important design choices, it is important to build a full theoretical understanding of the spectra of Jacobians at initialization. To this end, we leverage powerful tools from free probability theory to provide a detailed analytic understanding of how a deep network’s Jacobian spectrum depends on various hyperparameters including the nonlinearity, the weight and bias distributions, and the depth. For a variety of nonlinearities, our work reveals the emergence of new universal limiting spectral distributions that remain concentrated around one even as the depth goes to infinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies

Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...

متن کامل

Examining the Role of Social Networks in Promoting Urban Culture (Case of Study: Citizens of Karaj)

This research has been conducted mainly to examine the role of social networks in promoting urban culture in Karaj citizens in 2018. The research intends to investigate the role of attendance in social networks and the type of using it to promote urban culture and social networks' role in the legalism, responsibility, participation, and universality that are the components of urban culture. Thi...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09979  شماره 

صفحات  -

تاریخ انتشار 2018